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Abstract. The spinor may be defined as an element of a minimal ideal (primitive element) 
in a Clifford algebra. We pose the question: what are the necessary and sufficient covariant 
conditions to be imposed on the antisymmetric tensors of a Clifford number such that it 
is primitive? The solution to this problem is illustrated for the case of the real Pauli 
algebra. Special cases of the conditions yield the non-relativistic two-component spinors 
in spin space and spinor-tensor relations given by previous writers. 

1. Introduction 

It has long been known that, instead of regarding the spinor as simply an operand in 
a representation space (a ‘column’), it may be considered as embedded within the 
Clifford algebra that operates on it. This idea originated with Sauter (1930) who 
showed how the Dirac equation could be solved with the aid of algebraic techniques 
without recourse to matrix representations for the Dirac operators, a method later 
extended by Kahler (1961, 1962) and more recently by Greider (1980). The precise 
nature of the Clifford-algebraic substructure of which the spinor is a part-a minimal 
ideal-was clarified by Riesz (1946, 1953). Thus the use of a full geometric algebra, 
in which one can add tensors of different rank, incorporates within one formalism the 
spin spaces of the group-theoretical approach (minimal ideals), up and down spinor 
indices (left and right ideals) and the invariance groups. In this way one obtains a 
conception of spinor theory of great generality and unity which a number of physicists 
have studied in various contexts (e.g. Coquereaux 1982, Doria 1977, Graf 1978, 
Hestenes 1966, 1975, Teitler 1965). This view of things has not been widely exploited, 
however. 

One problem in the algebraic theory that has not been adequately explored relates 
to the tensor representation of spinors. Several authors have attempted to clarify the 
meaning and significance of the column spinor by relating bilinear combinations of 
its components to local tensorial structures located in space (Euclidean three-space 
E3 or space-time) (see for example Cartan 1966, Kramers 1957, Penrose 1968 and 
Takabayasi 1955,1957). A comparable approach to the tensorisation of spinor theory 
which starts from the algebraic definition has not been well developed. In fact this 
problem arises naturally when one realises that, in the algebraic approach, a spinor 
is just a special kind of Clifford number (‘primitive’, i.e. one which generates and lies 
in a minimal ideal (left or right)), and that a Clifford number is a superposition of 
multidimensional exterior forms with antisymmetric tensor coefficients. Thus it might 
be expected that a necessary and sufficient algebraic condition could be imposed on 
a Clifford number such that it is primitive, with equivalent covariant subsidiary relations 

@ 1983 The Institute of Physics 2363 



2364 P R Holland 

among the aggregate of forms. This would yield the fullest possible characterisation 
of the spinor, in terms of tensors, implied and allowed by the algebraic definition. A 
treatment of this kind is, indeed, possible although to the author’s knowledge this 
problem has not been clearly posed in the literature. 

To be consistent such a procedure must, of course, reproduce the known spinor- 
tensor relations. It has proved possible in prior work to interpret most of the facets 
of the abstract quantum formalism in terms of, for example, vectors and bivectors 
and their interrelationships, apart from an ambiguity in the sign of the spinor. 
However, the motivation for the tensor constructions used in the literature, in 
particular for the spinors of E3, has not always been clear. In our approach, this 
problem of representation is treated systematically and falls into two parts. The initial 
task is to discover the conditions under which a Clifford element is primitive. In § 2 
we discuss this problem in general terms and suggest two methods of solution. One 
of these can, in principle, be applied to any Clifford algebra; the other method, 
although more elegant, applies only to certain kinds of Clifford algebra. Once the 
nature of the primitivity restriction is established, a discussion of the relations between 
the spinor and the algebraic notion of spin space on the one hand, and tensors on the 
other hand, can be entered into. 

In this paper we shall only be concerned with carrying through the above procedure 
for the case of the real Pauli algebra C3 (the universal Clifford algebra of E3 where 
the tensor coefficients are real). Both methods apply here. In 9 3 various forms of 
the primitivity condition are given and the equivalent tensor relations stated. As a 
by-product of the main algebraic result the general form of elements which are of 
particular importance to the structure of the algebra may be deduced; for example 
we give all the primitive idempotents in C3. 

It is when a matrix representation is chosen for the basis elements of the algebra 
that we make contact with the column spinors of the group-theoretical approach (in 
the present case the two-component non-relativistic spinors). In fact, the requirement 
of primitivity is the minimum necessary for a Clifford element to lie in a minimal 
ideal and we find for C3 that this is related to a product of two distinct dual column 
(Pauli) spinors. Restrictive assumptions must be made on the form of a primitive 
element, with equivalent restrictions on the representative matrix, in order to recover 
the element as part of a spin space or to derive the spinor-tensor relations found by 
previous writers. In the former case restricting the primitivity condition in a non- 
covariant way yields the linear components of a Pauli spinor as coefficients in a minimal 
ideal and, in the latter case, restrictions of a covariant nature imply various relations 
between tenscrs in E3 and quadratic combinations of the components of a single Pauli 
spinor. These matters are treated in 00 4 and 5 .  

As has often been noted, the physical observables defined by the bilinear combina- 
tions are not sensitive to the reversal of sign of the spinor wavefunction on rotation 
in space, although this property gives rise to real physical effects, as has been experi- 
mentally verified (Rauch et a1 1975, Werner et a1 1975). The sign reversal manifests 
itself in space in a non-local way (Bohm and Schiller 1956, Misner et ai 1973, Penrose 
19681, for example through the relative orientation of an object with its surroundings, 
and cannot be made manifest within the context of a purely local tensor theory of 
spinors. Our results confirm this and in the present paper we shall deal only with 
such a local approach. Also, our considerations are purely algebraic in that restrictions 
imposed by a wave equation, or indeed any relation involving derivatives, are not 
considered. 
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We should mention here that this work is closely related to the algebraic E-number 
theory of Eddington (1946). Certain preferred elements in Eddington’s theory have 
the property of being ’pure’, that is the matrices representing the elements factorise 
into a column times a row. In a representation (any representation) this is indeed 
the content of our primitivity condition. However, our approach follows a different 
route to that of Eddington who neither derived his condition, nor related it in its 
algebraic form to equivalent tensor conditions, in the ways we are doing. 

The detailed physical interpretation of the results of this paper, and their extension 
to the Dirac equation, will be discussed elsewhere. The motivation for the work 
derives from a wider study into the topological and algebraic basis of physics which 
makes use of de Rham cohomology theory as a means of bringing a common algebraic 
topological language to physical laws. This approach involves reformulating laws in 
the language of differential forms and then reinterpreting the content of the laws by 
writing them as topological statements. The relation between spinors and forms as 
presented here, and the algebraic structure that underlies that relation, is clearly of 
relevance to such a programme (a full discussion of this, which embraces electromag- 
netism and gravitation, is given by Holland (1981)). 

2. Primitive elements and algebraic spinors 

In this section we shall state two theorems, one of which is quoted, the other proved, 
which are basic to our approach, both being concerned with the conditions for 
primitivity. The results relate to associative algebras in general and do not rely on 
an algebra being specifically a Clifford algebra. We then describe how these theorems 
may be used in the context of a Clifford algebra to carry through the programme 
outlined in § 1. Details of the mathematical background assumed below may be found 
in the works of Abian (1971), Albert (1961) and Weyl (1950). 

Recall that a left ideal I in an algebra A (which we suppose has a unity element 
1) is a subalgebra such that for c E I and any a E A, ac E I ,  and that I is minimal if i t  
contains no left ideal other than itself or zero. 

Choose within an algebra A a primitive idempotent E. Our reason for concentrat- 
ing on such an element is that the only known theorems which are of use to us 
concerning elements which generate minimal ideals relate to idempotents. An example 
is given by Albert (1961, pp 26 and 40) as follows. 

Theorem 1. 

if E is the only idempotent of EAE. Further: 
(i) Suppose E is an idempotent in an.algebra A. Then E is primitive if and only 

(ii) If A is simple, E is primitive if and only if EAE =DE,  i.e. 

ECE = zE for all C E A ,  some z E D  (2.1) 
where D is a division algebra appearing in the Wedderburn decomposition of A whose 
unity element 1 coincides with that of A. The unity element in the division algebra 
DE is E and Ez = z E  for all z E D .  

We now give the basic condition for any element in an algebra A to be primitive. 
Consider a minimal left ideal which has a primitive idempotent E as its unity element 
so that any element of the form $E, $ E A ,  lies in the ideal and, indeed, generates it .  
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Then $ itself is an element of a minimal left ideal if and only if 

* =*E. ( 2 . 2 )  

Similarly 4 is an element of a minimal right ideal if and only if $ =E$. Either of 
these conditions characterise $ as primitive (i.e., IC/ factorises into itself pre- or 
post-multiplied by some E ) .  When A is a Clifford algebra such 4's are called 'algebraic 
spinors' or more particularly left and right algebraic spinors, respectively. 

In the event that A is simple and that the centre Z c A  and the division algebra 
D coincide, we can give the criterion for the primitivity of J, in a form that does not 
depend on a particular generating idempotent. Obviously, not all Clifford algebras 
possess these properties, but the real Pauli algebra (see 0 4) and the Dirac algebra do. 

Theorem 2. 
$ = $E, where E satisfies the provisions of theorem l(i i)  with D = Z, if and only if 

$C$ = $2 for all C E A and some z E Z. ( 2 . 3 )  

For, from theorem 1, for any C E A, (LC$ = @E(C$)E = $Ez = $2. Conversely, 
$C$ = (l/z implies ($z- ')C($z- ')  = $2-' for all C E A  so that, putting C = 1, there is 
a z '  EZ, for which E = @z'-' is idempotent, and ECE = z'- 'zE for all C, whence, by 
theorem 1, E is primitive. Thus, there exists a primitive idempotent E = (l/z'-' with 
$ = $E. This theorem holds equally well, of course, for a right spinor. 

Given the stated restrictions on A, ( 2 . 3 )  gives the minimum condition on $ for it 
to factorise in the form ( 2 . 2 )  without depending in any way o n  the specific form of 
E. Naturally, 11, may satisfy conditions additional to ( 2 . 3 )  when a particular form for 
E is chosen in ( 2 . 2 ) .  

What we require is to go further and state the primitivity condition purely in terms 
of $, without reference to any other algebraic element, when A is a Clifford algebra. 
Two methods present themselves. Firstly, when the requirements of theorem 2 are 
satisfied, this can be accomplished by letting II/ and C be general Clifford numbers 
and finding the restriction on $ such that ( 2 . 3 )  is obeyed for all C. Although this 
yields the condition in a straightforward way, it involves somewhat longwinded 
calculations. Secondly, an easier method is simply to take a particular primitive 
idempotent E and solve ( 2 . 2 )  as a set of simultaneous equations by eliminating the 
idempotent unknowns to leave conditions on 9. However, in so doing we must be 
careful not to import into the result any restriction on $ which depends on the specific 
form of the E chosen. We can ensure this by using a covariant (in the sense of 
coordinate transformations) form of idempotent in which basis elements of the algebra 
are not singled out in a preferred manner. The spirit of this approach is: given one 
primitive element E, we can find all primitive elements. The second method has the 
advantage of being applicable to any Clifford algebra. These points will now be 
c!arified through the study of an example. 

3. Tensor conditions for the algebraic Pauli spinor 

3.1. The real Pauli algebra 

We shall find in this section the algebraic and tensorial conditions for a n  aggregate 
in the real Pauli algebra C3 to be primitive. A general number CE C) is a superposition 
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of scalar S, vector V, bivector B and pseudoscalar P terms: 

C = S + V + B + P  (3 .1 )  
123 where V = V,e', B = tBl,e'', P = ( 1 / 3 ! ) P & ? ' k J  = P123e , i, j ,  k = 1 , 2 ,  3 ,  c3 being a 

linear associative algebra generated by 1 and the one-forms e ' ,  i = 1 , 2 , 3  with inner 
product 

e '  . e ~  = 2 ( e ' " + e l e ' ) = g ' ' ~ ~ ' J  (3 .2 )  

(we need not distinguish between forms and vectors). We have used the notation 
e" ' ' = e f 1  A , .  , ~ e ' ,  for the outer product. The tensor coefficients are real; it should 
be noted that when C3 is represented over the complex numbers, the non-relativistic 
two-component spinors with complex components are recovered from the algebraic 
spinors (8 4). The centre 2 comprises scalar and pseudoscalar elements. 

We now give some useful formulae (which are valid for any Clifford algebra). The 
inner product of an r-form R and a q-form 0, with q a r ,  is a (q -r)-form R Q given 
by 

~i l . . . i , ~ ,  , k , . . . k q - ,  
R * Q =  1 1  ... irk' ... kq -, 11 . . .Jqe (q -r)!r!q! 

with tensor components 

(R * Q ) k , , , , k , - , =  / r  !p i i " ' i r ~ i l . . . i , k l . . . k q  ~, (3 .3 )  
where the indices on R have been raised using gii .  The components of the outer 
product are 

(3 .4 )  
The Clifford product of an r-form and a q-form contains, in general, intermediate 

terms other than the extremes of the (q-p)  inner product and the ( q + p )  outer 
product. Since the only term not to depend on metric in such a product is the outer 
product, we call the intermediate terms 'semi-inner products'. In the case of the Pauli 
algebra the only semi-inner product to occur in a product of two Pauli numbers is a 
bivector (two-form) term (B1,Bz) formed from two bivectors B1, B 2 ,  This may be 
rewritten in terms of the inner and outer products of the factors as follows 

i ,  ... i j , . . . i  
(R  " Q ) k l . . . k , + q =  ( l / r ! ) ( l / q ! ) S k , . . . ~ , + q  qR~l...i,Qjl.../q. 

(B1,Bz) = "Bz A * B i z  *(B1 * *B2) 

with the Hodge dual *B = iEijkBikei. In particular (B, B) = 0. All calculations within 
C3 are therefore expressible in terms of just the inner and outer products of forms. 
With the help of the above formulae it is straightforward to prove a series of identities, 
for example 

( v * B1) B2 = V ( B 1  * B2! -B1 ( v A B2) ( B 1 . B 2 ) . P = B 1 . ( P . B 2 ) e t c  

although we shall not list them here. These have been used without comment below. 
One further result will be of use. Apply successively to C the invariant operations 

of reversing the directions of all one-forms (c = S - V + B - P :  the space conjugate) 
and reversing the order of products of one-forms Cc S + V - B - P :  the Hermitian 
conjugate), which operations commute. The result is = S - V -B + P. Finally, form 
the product 

(3 .5 )  CE = ( S 2 -  v * v -B .B + P . P )  + 2(SP - v AB).  
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Further details on Clifford algebras may be found in Hestenes (1966), Kahler (1960), 
Porteous (1969) and Riesz (1958). 

3.2. Condition for primitivity 

3.2.1. First method. The assumptions of theorem 2 hold for C3 and so the condition 
for 4 E C3 to be primitive is given by (2.3). For 9 of the form (3.1) and an arbitrary 
c = s + U  + b + p  it may be shown that, quite generally, 

(3.6) 

where we have used (3.5) and z = 2[(sS + e  ' V + b  . B + p  . P ) + ( s P + v  A B  + 
b A V + ~ S ) ] E  Z. It is straightforward to prove from (3.6) that = z$ for all c E C3 
and some z E Z  if and only if  

* 

*c* = z* - *@ 

*& = 0. (3.7) 

This solves the problem of stating the condition for CL to be primitive purely in terms 
of 4. (3.7) is equivalent to 

S 2 - V *  V - B * B + P . P = O  S P =  V A B  (3.8) 
and since 

$h2=(Sz4 v *  V+B.B+P.P)+2(SV+B.Pj+2(SB+V.P)+2(SP+VAB) (3.9) 

to 

* I z  = 2 ( S  + P)* (3.10) 

which gives the condition in the form closest to (2.3 j. 
Using (3.3) and (3.4) the alternative forms of the condition are summarised in 

table 1. There is a degeneracy in these conditions in that, if i,b satisfies them, then so 
do 6, 6, 6 and sCL (s a scalar). In addition, the unit pseudoscalar, when applied to a 
q-form Q, is related to the Hodge duality operator, the precise relation being 

e 1 2 3 ~  = l-l):aq-l)* Q (3.11) 
with, since ** = ( - 1 ) q ' 3 - q '  , (e  1 2 3  ) = -1 as required. If we define the Hodge dual of 

Table 1. Five equivalent necessary and sufficient conditions for a real Pauli number 
CL = S + V + B + P E  C3 to be primitive. These conditions leave six degrees of freedom in 
CL arbitrary. 

(1) Coordinate free S2 - V .  V -  B . B  + P .  P = 0 
S P =  V A B  

( 2 )  Components i, j ,  k = 1, 2 ,  3 S 2 -  V,V' +tB, ,B"-  P:23 = 0 
SP123 = ' I k  V,BIk 
- .  

(3) Algebraic 

14) Algebraic-primitive CL2 = 2 ( S + P ) *  

CLJ = l j $  = 0 

15) Matrix 
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a Pauli number 4 to be *$ = * S  + * V + *B + *P then it is true that *4 also satisfies 
the conditions of table 1. 

3.2.2. Second method. We now show how to recover the table 1 conditions directly 
from (2.2) without recourse to (2.3). First of all we require a primitive idempotent 
E-in solving (2.2) for $ it is not necessary to use the most general primitive idempotent 
in C3 (which is an element constrained by E = E2 and theorem 1). Since C3 is simple, 
theorem l ( i i )  is applicable and it is readily verified that the idempotent 

E = $ ( l + u )  (3.12) 

where U is a unit vector, is primitive, since for any C as in (3.1), ECE = z E  where 
z = s  + p  €2  with s = S + u  1 V,  p = U  A B  + P  (and z - ' =  ( s 2 - p  . p ) - ' ( s  - - p ) ) .  

The idempotent E' = ;( 1 - U )  is also primitive and so C3 may be decomposed into 
the direct sum of two minimal left ideals: 

C3 = C3E OC3E' EE' = E'E = 0 (3.13) 

i.e. any real Pauli element is a sum of two primitive elements. 
Consider then the left spinor (2.2) which lies in the ideal generated by (3.12): 

$ = $U* (3.14) 

We could fix E further by choosing U = e3, say. For 4 of the form (3.1), (3.14) then 
yields 

s = v, Vl=B13 v2 = B23 B12 = p l 2 3 -  (3.15) 

This non-covariant restriction has no particular significance and bears out the remark 
in 8 2 that we must not single out in E the basis elements in terms of which the 
multiforms of $ are expressed if we are to discover a covariant condition on $, 
Maintaining a general U, (3.14) gives eight equations of which only four are indepen- 
dent. Since U ' U  = 1 the elimination of U from (3.14) will leave at most two conditions 
for the tensors of 4. We omit the details but it is easy to show from (3.3) and (3.4) 
that this procedure yields (3.8) and su = ( V  * V - P P) V - S(B . V) - B ( V  B )  with 
s = S (  V .  V - P .  P). Now, conversely to this derivation, starting with the relations 
(3.8) and substituting U as just given into the right-hand side of (3.141, we recover 
the left-hand side of this latter set of equations. It follows that (3.8) are the necessary 
and sufficient (covariant) conditions for $ E C1 to factorise in the form (3.14) and so 
be an algebraic Paiili left spinor. 

Similarly, the constraints (3.8) are consequent to, and imply, the condition for 4 
to be an algebraic right spinor, that is $ =E$ with E of the form (3.12)t. Evidently, 
although this method operates via the use of a particular choice of primitive idem- 
potent, we are able to deduce the general condition for $ to generate a minimal ideal 
(so that $ factorises in the form (2.2) where E is any primitive idempotent). 

3.3. Particular cases (table 2). 

We can enumerate all the primitive idempotents in the real Pauli algebra from 
(3.10) by noting that, in addition to being primitive, $ is idempotent if and only if 
(L2 = 2(S +PI$ = $. Writing out the second equality shows that if P is real then P = 0 

f Where of course U now has a different form in terms of IL. In fact, J, = @U is equivalent to (L'= U$, 
same U. 
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Table 2. Special typas of primitive elements in C3 with equivalent matrix restrictions 
additional to (I = 67. 

Idempotent S = $ ,  V . V + B . B = &  V A B = O ,  P=O; T r ( I = l  
(leaves four degrees of freedom) 

Nilpotent S=O, P=O,  V . V + B . B = O ,  V A B = O ;  Tr(I=O 
(leaves four degrees of freedom) 

Hermitian S * = V , V ,  B=O, P = O ;  $ = $  
(leaves three degrees of freedom) 

whence S = t with no further restrictions. These conditions must be combined-with 
those of table 1. A special case is € = t ( l +  U )  as is also obviously true since € E  = 0. 
We note that Lounesto (1981) has given a method for constructing primitive idem- 
potents in real Clifford algebras but that this does not yield all such idempotents 
associated with a given Clifford algebra. In the case of C3 Lounesto's construction 
reduces to (3.12). 

The non-trivial nilpotent elements in C3 are those for which 4 # O  and 
$ ' = O .  The necessary and sufficient condition for this is, from (3.9), S =P=O,  
V V + B B = 0, V A B  = 0. Moreover the requirement 4' = 2(S +P)$ = 0, which is 
necessary and sufficient for an element to be a primitive nilpotent, adds nothing to 
these conditions and we conclude that all nilpotents in C3 are primitive. 

Finally an element is Hermitian if (I/ = 4, i.e. B = P = 0. The necessary and sufficient 
condition for a primitive element to be Hermitian then follows from the combination 
of these restrictions with those of table 1. 

4. Recovery of spin space 

Having established in the last section intrinsic algebraic and tensorial conditions for 
a real Pauli number to be primitive, we now wish to see what these restrictions look 
like when a matrix representation is chosen for the basis elements of the algebra. In 
particular we desire to recover the column spinor as an element of a spin space (this 
section) and also to derive covariant tensor-spinor relations (next section). 

By Wedderburn's theorem C3, which is simple and of order 8, is isomorphic to 
the direct product of the algebra of 2 x 2 real matrices and a division algebra D of 
order 2. Since the centre 2 of a simple algebra is a subalgebra of a division algebra 
in this decomposition and, for C3, is of order 2, we see that D = Z .  Noting further 

that C3 is isomorphic to the algebra of 2 x 2 complex matrices, subject to (3.2) (and 
that a real Pauli number may be expressed as the sum of a complex scalar and a 
complex vector). Such an algebra is generated by, for example, the unit matlix I and 
the Pauli matrices 

that 2 is isomorphic to the complex numbers, so that we may write e 123 - - i, it follows 

0 1  0 -i e '= ( '  O) 
0 -1 

o) o )  

with Tr I = 2, Tr e '  = Tr e" = 0, Tr e l Z 3  = 2i. Thus, representing a Pauli number $ as 
a complex matrix (I/:, a, b = 1 ,2 ,  we have Tr 4 = 2(S +ip123) and so 2(S +P) = (Tr *)I. 
The condition (3.10) now becomes in matrix language 

IL2 = (Tr $14. (4.2) 
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By an easy extension of a theorem proved by Eddington (1946) it can be shown 
that, for Tr (I/ # 0, (4.2) is the necessary and sufficient condition for a square matrix 
to factorise into a column times a row: 

where, in our case, a, b = 1,2 and the components of the factors are complex numberst. 
When Tr (I/ = 0, which is the case for nilpotent matrices, a 2 x 2 matrix factorises so 
that the decomposition (4.3) is characteristic of any primitive element in G$. As is 
to be expected (4.3) behaves as a generator of either a minimal left ideal or a minimal 
right ideal depending upon which side we multiply from. Thus, keeping (I/ fixed so 
that it characterises a particular minimal ideal, multiplication on the left with any 
2 x 2  matrix yields an arbitrary column times a fixed row, that is an element of the 
minimal left ideal generated by 4. Effectively, then, keeping 77 fixed and varying 5 
gives a minimal left ideal or, with 5 fixed and 77 varying, a minimal right ideal. 

Under a rotation e ' +  Re'R-' ,  R =I?, R k  = 1,  R E S U ( ~ ) E C ~  we have in (4.3j 
tq + ( R [ ) ( ~ R - ' )  i.e. 

(4.4) 

so that the factors transform as elements of dual vector spaces, as is indicated by the 
position of the indices. The factorisation condition is an intrinsic property, independent 
of matrix representation. (Of course we can verify the invariance of the algebraic 
primitivity condition directly by transforming (3. lo).) We have therefore arrived at 
the representation of a left spinor as a column matrix and a right spinor as a row matrix. 

Thus far no restrictions have been imposed on the dual spinor factors either 
individually or in relation to one another, i.e. we have not gone beyond the tensor 
conditions of table 1. Going further, let us choose 77 = (1 0) or 5 = (A) in the left or 
right cases respectively. Then 

(4.6) 

Since the tensor conditions do not distinguish between left or right ideals a restriction 
imposed on one of the spinor factors alone cannot have tensorial (i.e. covariant) 
significance. Thus in (4.6) we obtain the components 6" in isolation but the correspond- 
ing restriction on the tensors of (I/ is non-covariant. On the other hand fixing a 
relationship between the factors can lead to a covariant restriction of the tensor 
relations. This means, however, that we can only relate quadratic combinations of 
column spinor components to tensors which confirms the remarks of § 1 that the sign 
of the spinor cannot be afforded any meaning in terms of local tensors, 

The significance of fixing 77 to be (1 0), say, is that this is the matrix equivalent 
operation to choosing a specific basis for an ideal in the algebra. This can be, seen as 
follows. Following (3 .15) ,  a basis for the minimal left ideal generated by E = p(1 + e 3 )  

f In our case this condition is also given by det (I, = 0. 
i We may reinterpret (3.4) as proving that a 2 x 2  matrix is a sum of two outer products of a column 
with a row. 



2372 P R Holland 

is given by i(l + e 3 ) ,  i ( e 1 + e 1 3 ) ,  i ( e 2 + e 2 3 ) ,  i ( e '2+e '23)  with real coefficients or, taking 
e 123 = i, we have for a general element of the ideal 

(4.7) a '+(I + e 3 )  +a2te '(1 + e 3 )  

where a', a = 1 , 2  are complex numbers. Similarly, an element of the minimal right 
ideal generated by E may be written 

pl$(1 + e 3 ) + ~ & 1  + e 3 ) e 1  (4.8) 

where Pa,  a = 1,  2 are complex numbers. Taking +( l+  e 3 )  and ;e '(1 + e 3 )  or i(1 + e 3 )  
and i ( l + e 3 ) e 1  as the basis of a (column or row) representation space, the basis 
elements of the algebra have in both cases the (left or right) representation (4.1).  
Using (4.1) in (4.7) and (4.8) in turn we then recover the alternative forms (4.6).  The 
same argument applies to the minimal left and right ideals generated by E' = i(l - e 3 ) .  
Here bases for the ideals are provided by $( 1 - e ), Fe (1 - e 3 ,  and i( 1 - e '), t (  1 - e 3)e 
respectively, with respect to which the basis elements have a representation (different 
from (4.1)) which again yields the forms (4.6).  Using the representation (4.1), however, 
the E'-generated ideals take the form which corresponds to putting [ = C y )  or q = (0 1) 
in (4.3) (with (3.13) being a sum of two column spinors). As noted above, we see 
that the specific choices of factors and bases are additional to (although consistent 
with) the tensor conditions and have no tensorial interpretation. 

With respect to a particular minimal ideal (spin space) basis (I, is thus recovered 
as a column or row spinor with a linear vector space structure, the forms (4.6) being 
invariant under rotations from the left or from the right respectively. It must be noted 
that there are an infinite number of such spin spaces within the algebra, each one 
being characterised by a specific choice of generating idempotent for the ideal. 

3 1 1  

5. Recovery of known tensor-spinor relations 

In order to relate the tensors of an algebraic real Pauli spinor to the components of 
a single column spinor in a covariant manner we require a relationship between the 
factors in (4.3).  We shall consider here two special cases of the primitive tensor 
conditions which are each equivalent to such a relationship and which yield tensor 
representations of spinors previously proposed in the literature. The algebraic origin 
of these known tensor-spinor relations is hereby uncovered: nilpotency and Hermitic- 
ity. The primitive idempotents, although important to the structure of the algebra, 
do not appear to define on their own any spinor-tensor relations of interest. 

Consider first the nilpotent restriction. According to (3.1 1) the unit pseudoscalar 
i is a duality operator so that to a bivector B there corresponds a vector e 123 = 

W: B = i W. Using this vector, the conditions for a nilpotent element of table 2 become 

c L = V + i W  v . v =  w . w  v * w = 0  (5.1) 
i.e. 4 appears as a complex vector whose nilpotency means that it is null. In matrix 
terms the components of the complex vector are given by 

t T r ( 4 e L ) = f T r ( 7 e ' c ) =  V, +iW, i = 1 , 2 , 3 .  (5.2) 
Now, the nilpotent matrix 4 has zero trace: [ 'qU = 0. This condition is satisfied by 
qa = is the covariant spinor equivalent to the 
contravariant spinor tu, as is normally defined through the spin metric. Utilising the 

2 where = -6 , 5 2  = c1 so that 
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representation 14.1) in (5.2) with 4;  = ratb yields 

V1+iW1 =t(( t1)2-(52)2~ v2 + i w2 = $((ell2 + ( 5 2 ) 2 )  v3 + i w3 = -t1t2. 
(5.3) 

These are the relations given by Kramers (1957) and, apart from a factor of 2, by 
Cartan (1966). They serve to define, in terms of a pair of equal length real orthogonal 
vectors (or a triad of real orthogonal vectors if we include a third vector i( V A W)), 
the four degrees of freedom of a two-component spinor, up to a sign. In particular, 
a change in the phase of 5" by 8 appears as a rotation of the vectors V, W, as a unit, 
through the angle 28 about the axis i (  V A W). Note that if 5" transforms as in (4.4) 
then la does indeed transform according to (4.5). 

In the work of these authors the use of a complex vector in real space E3 to 
represent a spinor appears to be a rather obscure construction. In our theory 'complex 
numbers', including spinor components, only occur through the identification of the 
unit pseudoscalar with the complex unit. The explicit use of i in (5.1) is appropriate 
to a restricted vector calculus in which one cannot add tensors of different rank (vector 
plus bivector) and it represents in the work of Cartan and Kramers a tacit introduction 
of The construction of these writers is just a way of formulating the theory of 
primitive nilpotents in C3 where e 1 2 3  = i. 

Turn now to the primitive Hermitian elements (table 2). We may choose in this 
case 7" =tu* (which transforms as in (4.5)) and, with (1, = S + V, S = Tr 4, V' = : Tr(9e ' ) :  

As noted by Takabayasi (1955) in this interpretation the tensors serve to define only 
three of the degrees of freedom of the spinor components, the phase of 5" not being 
reflected by (5.4) (since (5.4) depends only on the difference of the phases of the 
components of 6"). 

Specialising still further, by normalising with Tr  4 = 1, we obtain the primitive 
Hermitian idempotent elements-it is these which are used in the standard density 
matrix treatment of a non-relativisticspin-:particle (Schiff 1968, p 381 1. Such elements 
have the form :(l +U), U a unit polarisation vector, as in (3.12), and these primitive 
idempotents represent pure states. The density matrix is a Hermitian element of trace 
1 which decomposes into a sum of primitive elements (pure states). 

6. Summary 

The aim has been to systematise the various non-covariant and covariant relations 
between tensors and spinors in C3 by showing that they are particular cases of a single 
algebraic requirement. We have found the covariant subsidiary conditions on the 
tensors of a real Pauli number for this number to be primitive and have the form 
(4.3). Restricting the tensor conditions in a non-covariant way (as in (3.15)) yields in 
a linear fashion the group-theoretical components of a spinor (4.6) whereas restricting 
them in a covariant way (as in table 2) yields the components of a spinor but only 
quadratic combinations thereof. In  the latter case we have shown tha't the nilpotent 
restriction gives a set of tensors which carry the same information as a column spinor, 
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apart from a sign, and the Hermitian restriction the same information apart from a 
phase. 

It is an outstanding problem to extend this work so as to state the condition for 
primitivity, as a restriction formulated in terms of just one algebraic element, for any 
Clifford algebra. This is readily done, however, in the case of the Dirac algebra, as 
will be reported elsewhere. 
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